Link prediction based on combined influence and effective path
نویسندگان
چکیده
منابع مشابه
Link prediction based on path entropy
Information theory has been taken as a prospective tool for quantifying the complexity of complex networks. In this paper, we first study the information entropy or uncertainty of a path using the information theory. Then we apply the path entropy to the link prediction problem in real-world networks. Specifically, we propose a new similarity index, namely Path Entropy (PE) index, which conside...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملProviding a Link Prediction Model based on Structural and Homophily Similarity in Social Networks
In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networ...
متن کاملInfluence of the link weight structure on the shortest path.
The shortest path tree rooted at a source to all other nodes is investigated in a graph with polynomial link weights tunable by the power exponent alpha. By varying alpha, different types of shortest path trees, in short alpha trees, appear. Especially, the alpha --> 0 regime that corresponds to heavily fluctuating link weights possesses a peculiar type of tree. The most important properties of...
متن کاملLink Prediction Based on Graph Neural Networks
Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks’ matrix representations to learn an embe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Modern Physics B
سال: 2019
ISSN: 0217-9792,1793-6578
DOI: 10.1142/s0217979219502497